Step of Proof: assert_of_eq_atom
9,38
postcript
pdf
Inference at
*
I
of proof for Lemma
assert
of
eq
atom
:
x
,
y
:Atom. (
x
=a
y
)
(
x
=
y
)
latex
by ((((Unfold `eq_atom` 0)
CollapseTHEN (GenUnivCD))
)
CollapseTHENA ((Auto_aux (first_nat 1:n
C
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
x
: Atom
C1:
2.
y
: Atom
C1:
3.
if
x
=
y
then tt else ff
C1:
x
=
y
C
2
:
C2:
1.
x
: Atom
C2:
2.
y
: Atom
C2:
3.
x
=
y
C2:
if
x
=
y
then tt else ff
C
.
Definitions
,
t
T
,
P
Q
,
P
Q
,
P
Q
,
x
=a
y
,
P
Q
,
x
:
A
.
B
(
x
)
,
A
,
False
Lemmas
bfalse
wf
,
btrue
wf
,
assert
wf
origin